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In the present paper we formulate a predictive theory of the formation of sand 
ripples under sea waves. The theory is based on a linear stability analysis of a flat 
sandy bottom subject to a viscous oscillatory flow. The conditions for decay or 
amplification of a bottom perturbation are determined along with the wavelength of 
the most unstable component as a function of the Reynolds number of the flow and 
of the Froude and Reynolds numbers of the sediments. A comparison between 
theoretical findings and experimental data supports the validity of the present 
theory. An analytical solution for viscous oscillatory flow over a small-amplitude 
wavy bottom is determined for arbitrary values of the ratio T between the amplitude 
of fluid displacement and the wavelength of bottom waviness. Previous works by 
Lyne (1971) and Sleath (1976), who considered small or large values of T ,  are thus 
extended. 

1. Introduction 
Sand ripples are bedforms known to occur at the bottom of sea waves in shallow 

waters. Their practical interest arises in connection with the study of sand transport 
and wave damping in nearshore regions. 

The mechanics of ripple formation is qualitatively understood. Indeed it is known 
(Sleath 1984) that a small spatially periodic perturbation of the sea bottom under 
wave action produces steady streaming which consists of recirculating cells, the 
form, intensity and direction of which depend on the characteristics of the wave and 
of the perturbation. Because the sediment is driven by the fluid, if the steady drift 
in the vicinity of the bed is directed from the troughs towards the crests of the 
perturbation and is strong enough, the latter grows and a pattern of regular or 
irregular sandy waves appears. 

On the basis of experiments, Bagnold (1946) distinguished ‘ rolling-grain ripples ’ 
from ‘vortex ripples ’. He observed that rolling-grain ripples, characterized by the 
absence of separation behind the crests, are the first to appear on an initially plane 
bed subject to wave action. Increasing the amplitude of velocity oscillations, flow 
separates and vortex ripples develop. Rolling-grain ripples have also been observed 
by Manohar (1955), Horikawa & Watanabe (1968) and Sleath (1976) among others. 
Recent experiments by Blondeaux, Sleath & Vittori (1988) seem to indicate that a 
range of the parameters exists within which rolling-grain ripples reach an equilibrium 
configuration. Other authors have performed experiments in which stable sandy non- 
separated bottom configurations were not observed, which led to questioning the 
actual existence of rolling-grain ripples. Notwithstanding this, the importance of 
investigating the conditions for the development of a small non-separated bottom 
perturbation by means of a stability analysis stems from the fact that in the f is t  
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stage of growth the amplitude of any kind of ripple is so small that vortex formation 
is inhibited. 

Recently Lyne (1971), Uda & Hino (1975), Sleath (1976), Kaneko & Honji (1979), 
Kaneko (1981) contributed to the explanation of rolling-grain ripple formation by 
studying the oscillatory viscous flow over a fixed wavy wall with wavelength 1* and 
amplitude 2e* under the assumption of small values of s*/l* and small or large 
values of the ratio r between the amplitude of fluid displacement and I * .  I n  order to 
determine the conditions of incipient ripple formation, sediment flow rate was then 
related to fluid flow on the basis of physical arguments. As pointed out by Sleath 
(1984), the difficulty with the two solutions for small or large values of r is that 
ripples usually form for values of r of order one. 

In  the present work we formulate a predictive theory of ripple formation based on 
a linear stability analysis of a flat sandy bottom subject to a water wave. An 
analytical solution for the viscous oscillatory flow over a wavy bottom is determined 
for arbitrary values of r .  Previous works on the subject are thus extended in a more 
significant range of the relevant parameters. A sediment flow rate formula is 
proposed which is based on physical arguments and on the experimental data of 
Grass & Ayoub (1982) and Sleath (1978). 

The conditions for the decay or the amplification of a sinusoidal perturbation of 
the bottom are determined and the wavelength of the most unstable disturbance is 
obtained as a function of three parameters : the Reynolds number of the Stokes layer 
and the Froude and Reynolds numbers of the sediment. 

The present linear analysis is then extended in a companion paper (Vittori & 
Blondeaux 1990) where nonlinear effects are taken into account. In the latter 
contribution the time development of an initial small perturbation of the bottom is 
followed till a finite amplitude is reached. It is found that for some values of the 
parameters the only possible stable bottom configuration is such that flow separates 
behind the crests and vortices are generated. This allows the prediction of whether 
rolling-grain ripples or vortex ripples will develop, depending on wave and sediment 
characteristics. 

In  the next section we formulate the problem. In  $ 3  an analytical solution for the 
oscillatory viscous flow over a wavy bottom is determined for arbitrary values of r .  In 
the following section the time development of the bottom is described. Finally in $5 
the results of the linear stability analysis are presented along with some conclusions. 

2. Formulation of the problem 
Let us consider a two-dimensional gravity wave of small height H*,  length L* and 

period T* in shallow water of depth h* propagating over an initially flat cohesionless 
bottom formed by sediment of uniform size d * ,  density ps and porosity n. Let us 
respectively denote by p and v the density and kinematic viscosity of water. 

It is well established that the flow can be modelled as irrotational except within 
the unsteady boundary layer adjacent to the bottom. Since we are interested in the 
interaction between fluid and sediment, we focus our attention on the latter layer 
and use linear wave theory to describe the motion outside this region. We assume the 
characteristic thickness of the bottom boundary layer 6* to be much smaller than 
both the water’depth and the length of the gravity wave. Flow in the bottom 
boundary layer can then be considered as caused by fluid oscillations which are only 
parametrically dependent on the longitudinal coordinate. We define a Cartesian 
orthogonal coordinate system (x*, y*) with the x* axis lying on the bottom and 
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parallel to the direction of wave propagation, the y* axis directed upward. The above 
assumptions allow us to assume the following form for the velocity vector (u*,v*) 
outside the bottom layer: 

where t* is time, w* = 2 x / T *  angular frequency, U,* the amplitude of the irrotational 
velocity oscillations evaluated at the bottom and C.C. denotes the complex conjugate 
of a complex number. 

If the bottom is flat and d * is much smaller than the characteristic thickness of the 
bottom boundary layer S*, the fluid motion is described by the well known Stokes' 
(1851) solution and the sediment moves to  and fro. If the flow is laminar 8* can be 
assumed t o  be equal to  (2v /o*) i :  this occurs provided the Reynolds number 
characteristic of the bottom boundary layer (R6 = U,* 8*/v) does not exceed the value 
for which flow disturbances grow and turbulence develops (Merkly & Thomann 1975; 
Hino, Sawamoto & Takasu 1976; Tromans 1976; Blondeaux & Seminara 1979; 
Blondeaux 1987). 

(u*,v*)  = (-iUteiw*t*+c.c.,O) (1) 

Let us consider a bottom perturbation in the form 

y* = 1;1*(x*, t* )  = €*Cl(t*) eialz* + C.C. (2) 

with wavenumber a* and 'small ' (strictly infinitesimal) amplitude 2 ~ * C , ( t * ) .  
The study of flow and bottom development in the new configuration is posed by 

the vorticity equation, the flow and sediment continuity equations and boundary 
conditions which force the matching of the flow with the irrotational motion outside 
the bottom boundary layer and the no-slip condition at y* = 1;1*. 

Let us define the following dimensionless variables : 

€* (X3Y) = s* (x*, Y*) , t = t *w*,  E = ~ ,  a=a*8*, 

(3) 

where g is gravity, $* is the stream function ($* is such that u* = a$*/ay* and 
v* = -a$*/ax*)  and q* is sediment flow rate. The governing differential problem 
then reads (Sleath 1976) 

- " $ = o ,  - = o  for y = q ,  
aY ax (7) 

where the parameters particle Reynolds number R,, particle Froude number F, and 
the ratio between sediment and fluid densities s are defined in the form 
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In  order to close the above formulation, we need a relationship between sediment 
flow rate q* and flow properties. A relationship can be simply obtained by relating 
q* to the agitating forces which act on sediment grains. The latter move subject to 
the drag force and to  the gravity component along the bed profile, other forces being 
negligible. Indeed for values of U:, T* and d* characteristic of sediments a t  the 
bottom of gravity waves, the Keulegan-Carpenter number of the phenomenon is 
large and the forces acting on the particle related to flow acceleration can be 
neglected. Following an approach which has widely been used in research on steady 
sediment transport (Engelund 1974), sediment flow rate can be assumed to  be 
proportional to some power b of the agitating forces. If we assume that the drag 
force is proportional to pV*d * and the gravity component along the bed profile to 
(p, - p )  gd *3(a7*/i3x*) (V* being fluid velocity parallel to the bottom profile evaluated 
at y* = * and ,LA the dynamic viscosity of the fluid), in a dimensionless form we may 
write 

The constant p in (9) was introduced by Fredsrae (1974) in a different context. The 
values of a and b can be estimated in the relevant range of the parameters (i.e. for 
R, < RB) by requiring that relationship (9) should match the empirical law proposed 
by Grass & Ayoub (1982). 

It is found that a is a function of s, R, and F, (a  = 1.23 (s- l/s) F272Ri83)  and 
b is equal to 4.28. Moreover the value 0.15 has been employed for p, following Fredsrae 
(1974). Here a is related to  the amount of sediment moved by the flow and b to its 
temporal development. 

The results described below and those of Vittori & Blondeaux (1990) are not 
affected by the value of a, which consequently does not play any role in the present 
analysis. On the other hand, variations of b imply significant modifications of the 
results. The agreement between the time development of the sediment flow rate 
determined by means of (9) with b equal to 4.28 and that found experimentally by 
Sleath (1978) supports the proposed formula. 

It is worth pointing out that  using a sediment transport model which lacks a 
threshold condition for sediment motion is equivalent to ignoring the portion of the 
cycle when the instantaneous conditions lie below the threshold conditions for 
sediment motion. This approximation is quite advantageous from an analytical 
point of view because it avoids the need to model the discontinuous behaviour of 
sediment transport and is justified whenever the actual values of the parameters are 
well beyond the critical values corresponding to the threshold conditions for 
sediment motion. Indeed in this situation the portion of the cycle when sediment 
grains do not move is negligible. When ripples appear at the bottom of gravity waves 
sediment motion is usually well established. 

The above derivation of (9), though simple and possibly rough, appears to contain 
the main physical ingredients controlling the process of transport. It will be shown 
that when applied to the process of ripple formation it performs fairly well. 

We then consider bottom perturbations of small amplitude and assume E 4 1 .  The 
solution of the problem (4), (7)  is thus developed in power series of E in the form 

1c. = +.,(y, t )  + eC,(t)  @,(y, t )  eiaZ + C.C. + O ( E ) ~ ,  (10) 

q = ~ ~ ( t ) + ~ C ~ ( t ) ~ ~ ( t ) e ~ ~ + c . c . + O ( s ~ ) .  (11) 
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By substituting from (lo), (11) into (4)-(7) and equating like powers of E we find 

O ( 4  

I y = 0, 

We point out that a t  order E ,  the term proportional to the time derivative of C,(t) in 
the vorticity equation has been neglected. From a physical point of view, this 
corresponds to neglecting the influence of the variation of bottom elevation on fluid 
motion. From a mathematical point of view, this assumption is justified by the small 
value usually attained by the dimensionless parameter 

3. Flow solution 
In order to determine the stream function @ and thus the flow field, it is convenient 

to adopt a coordinate system (2 ,  y”) which moves with the fluid far from the bottom. 
Let us then write, 

(elt+ c.c.) dt, = y. t19) 
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The transformation (19) reduces the problem to the equivalent problem of the flow 
induced by the harmonic oscillation of a wavy wall in a fluid otherwise a t  rest. The 
wall motion is described by the equation, 

The stream function I,& in the new reference frame is related to  ~ by 

J = +++(e't+c.c.)g, (21) 

whence J ,  = $, ++(eit + c.c.1 g, = C P ~  ~ ( t ) ,  (22a, b)  

where J = J,+s(&:,ei""+c.c.). (23) 

O(EO) 

By substituting from (19)-(23) into (12)-(16) we find 

where N2 = (a2/agz -a2). The solution of equation (25) and boundary conditions (26) 
can be determined by means of a procedure similar to that used by Seminara & Hall 
(1976) in a different context. 

Let us develop the unknown function 6:, in a Fourier series 

+ W  

= C G,@)eimt 
m=-w 

By substituting from (27) into the partial differential problem (25), (26) we obtain an 
infinite set of ordinary differential equations for the coefficients G,(g) (m = - 00,oo). 
An argument similar to that used by Seminara & Hall (1976) then leads to the 
following structure for the functions Gm : 

where rn = (a2 + 2ni)t. 



Sand ripples under sea waves. Part 1 7 

pmj,  ymj  are By substituting from (27), (28) into (25) the constants Anmj,  
found to  be given by the following recurrence relationships : 

A,,,,* = !jiaR,{h,,m-l,j-l[(a+ (m- 1-n) i+j-l)2-a2-2i] 
+ hn,m+l,j-l[(a+ (m+ 1 -n )  i +j-  1)2 -a2-2i]} 

x {[(a + (m- n) i +j )2  - a2] [(a + (m-n)  i +j)2 -a2 -2im]>-l. (29) 
Similar expressions hold for Qnml, pmi, y m f .  

Finally a, and bn are determined by imposing the boundary conditions a t  y" = 0. 
This leads to a linear system of algebraic equations for the unknowns a, and b,. By 
truncating at  the Mth term the expansion (27) in such a way that the contribution of 
the harmonics M +  1 and - M -  1 to the solution is negligible, the latter system 
becomes 

-M < m < + M ,  (30) I +M 

C a n A m n  + b n B m n  = 0, 
n--M 

t M  

C an Cm, + b n D m n  = !j(1 + i ) P m - l +  3 1  -i) pm+l, 
n--M 

The value of M depends on the parameters of the problem and ranges between few 
units for small values of CLR, up to 25 for the largest value of aR, investigated in the 
present paper. 

The problem is then reduced to the solution of the linear algebraic system (30). 
Results obtained using the above procedure will be described in $5.  

4. Bottom development 
Once the stream function is known, one can easily solve for the bottom 

development substituting from (22a, b)  and (18) into (17). We find 

whence (34) 
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Four contributions to C,(t)  can be identified. The first two contributions are related 
to the real (gr) and imaginary (d,) parts of the time average of the function d ( t )  

The real part g,.-controls the amplification of the bottom perturbation, while the 
imaginary part d, is its wave speed. The latter must vanish for the symmetry of the 
problem. The third and fourth contributions are related to the oscillating parts of 
d(t) 

[ d ( 7 ,  a,Rd,Rd,Fd)- (d r+ id i ) ]d7 .  (36) I: 
They describe the time variation of the perturbation profile during a wave cycle. 
More precisely the real part describes oscillations of the amplitude of bottom 
perturbation while the imaginary part controls the small longitudinal oscillations of 
the ripple profile around its average position. 

The growth of_ perturbations and consequently ripple formation is thus controlled 
by the sign of dr, the value of which is negative or positive depending on the values 
attained by the flow and sediment parameters a,R8,Rd,Fd as described in the 
following section. 

5. Results and discussion 
As discussed above the steady streaming associated with secondary flow induced 

by bottom perturbations plays a crucial role in controlling ripple growth. Let us then 
first discuss our solution for the flow field. 

For low values of R8 and large values of a such that d R 8  is smaller than one, the 
steady streaming consists of two recirculating cells (see figure 1) and the flow near the 
bottom is directed from the troughs towards the crests of the perturbation. 
Decreasing a below a threshold value &, the flow pattern exhibits the presence of four 
cells (see figure 2). In this case, even though near the wall the flow is directed from 
the troughs towards the crests, a region close to the bottom exists where the flow 
direction reverses. This agrees well with results of previous authors (Lyne 1971 ; 
Sleath 1976; Kaneko & Honji 1979) who studied the oscillatory flow over a wavy wall 
in the limit of CCR, vanishing. Quantitative comparison with the latter authors is not 
shown in figures 1, 2 since the patterns of steady streaming are practically identical. 
On increasing the value of R, in such a way that the ratio between the amplitude of 
fluid displacement and the wavelength of the bottom perturbation be of order one a 
similar behaviour is found (notice that ripples in the field are characterized by values 
of CCR, of order one). However, as R, increases, the value of Oi: for which four cells 
appears first increases and then monotonically decreases. 

At present it is impossible to compare the present results with those of Lyne (1971) 
in the limit of T + co, since the present method becomes exceedingly expensive when 
T is larger than 10. For T = 10 the results obtained show that there are still significant 
differences between the present solution and that of Lyne (1971). 

We now discuss the effect of above flow structure on the time development of the 
bottom. Two contributions to d,. can be identified. The first is associated with the 
steady component of the fluid velocity evaluated at y* = $i* and reads 
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FIGURE 1. Steady streaming at  order E of the viscous oscillatory flow over a wavy wall 
(a = 0.4, R, = 0.1). 
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FIGURE 2. Steady streaming at  order E of the viscous oscillatory flow over a wavy wall 
( a  = 0.15,R8 = 0.1). 
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FIQURE 3. Stabilizing (2rl) and destabilizing (gr2) real parts of the average growth coefficient (>r) 

of the bottom perturbation versus the wavenumber a (R6 = 80, R, = 100, s = 2.65, /I’ = 0.15). 

If d * is much smaller than 6* this contribution is destabilizing since the steady drift 
close to the bed tends to carry sediment from the troughs to the crests of the 
perturbation, thus causing its growth. Sleath (1984) suggested that for larger values 
of d * a different behaviour may occur. Indeed, as previously described, depending on 
the values of a and R, a region not far from the bed may be present where the steady 
drift is directed from the crests to the troughs of the perturbation. 

The second contribution is due to  the component of gravity along the tangent to 
the bed profile which has a stabilizing effect. We find 

Indeed gravity opposes the tendency of the flow to carry sediment from the troughs 
to the crests of the perturbation, thus causing decay of the latter. 

The behaviour of a perturbation for given values of a, R,, R,, F, is thus controlled 
by a balance between the two effects described above. In figure 3 the two 
contributions are plotted versus a for fixed typical values of F,: R,, R,. It appears 
that the stabilizing effect due to gravity grows very rapidly as a increases, for large 
a reaching absolute values which exceed the destabilizing contribution due to the 
flow. However, a range of a may exist where destabilizing effects prevail over 
stabilizing effects. Similar behaviour was found for different values of F,, R,, R,. 

In  figure 4 the value of gr, obtained by adding the above two contributions, is 
plotted versus a for fixed values of R, and R, and different values of F,. It appears 
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FIGURE 4. Real part of average growth coefficient .2’, of the bottom perturbation versus the 
wavenumber a (R, = 80, R,  = 80, 8 = 2.65, p = 0.15). 
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FIGURE 5. Real part of average growth coefficient 2r of the bottom perturbation versus the 
wavenumber a (R, = 80, R, = 100, s = 2.65, p = 0.15). 

that a critical value of F, exists such that : for Fd less than Fdc bottom perturbations 
decay for each value of the wavenumber a ;  for F, larger than Fdc bottom 
perturbations, characterized by values of a falling within a restricted range, 
experience an average amplification within a cycle. 

Different values of the sediment Reynolds number (see figure 5) do not change the 
qualitative behaviour of the results. However, an increase of R, causes a decrease of 
the critical wavenumber a,. This fact implies that, for given characteristics of the 
wave, sediments with larger grain size are expected to form longer ripples. This trend 
is indeed experimentally observed. In table 1 experimental results from Sleath (1976) 
are reported. Pairs of runs are chosen such that all the parameters are similar except 
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d * = 0.404 mm d *  = 1.14 mm 

T* (5) u,. (cm/s) 1* (cm) T* (5) u,. (cm/s) 1* (cm) 

1.77 35.5 6.00 1.80 34.9 9.33 
1.83 51.5 8.66 1.87 50.4 11.8 
1.84 51.2 8.00 - 

2.54 37.1 6.24 2.68 35.2 12.0 
2.64 35.7 6.45 
2.80 33.7 5.95 2.72 34.6 12.75 
1.75 71.8 10.23 1.83 65.23 16.75 
1.97 63.8 8.65 1.97 60.6 16.00 
2.65 47.4 8.26 2.62 45.6 11.17 
3.2 39.3 6.14 3.19 37.4 12.83 

TABLE 1. Experimental results for Neath (1976): Y x 10-* cmz/s, p,/p = 2.65 
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R& 

FIGURE 6. Critical wavenumber a, versus the Reynolds number of the flow for the different 
values of the sediment Reynolds number (8 = 2.65, /3 = 0.15). 

for the grain size. It appears that the coarser sand produces ripples the wavelength 
of which can be twice as long as that found for the finer sand. Of course this trend 
is limited by the requirement that d * shall not be much larger than 6* for the theory 
to be valid. Indeed if d * 9 S* Stokes flow becomes not significant. This theoretical 
result is also clearly detectable in figure 6 where the critical wavenumber a, is plotted 
versus the Stokes Reynolds number for different values of the sediment Reynolds 
number. The strong variability of a, as function of R, for fixed R, is related to the 
value of the ratio between the amplitude of sediment displacement s* and ripple 
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R" 

FIQURE 7. Ratio between fluid displacement a* and the critical ripple wavelength Z* versus the 
Reynolds number of the flow for different values of the sediment Reynolds number (B = 0.15) 
(experimental data by Blondeaux etaE. 1988). 0 , 5  < R, < 15; a, 15 < R,  < 25; V, 25 < R, < 35; 
A, 50 < Rd < 80. 

wavelength l*.  Indeed during a wave period, sediments are subject to the action of 
a different number of steady recirculating cells depending on the value of s*/l*. 
When the number of steady recirculating cells which affect the motion of sediment 
grains changes, a strong variation of a, is produced. Indeed s*/l* is related to the 
value of r (r is the ratio between fluid displacement far from the bottom and ripple 
wavelength) and it is easy to verify that the maxima and the minima of a, lie on 
curves along which r is constant ( r  is equal to &,/4n). 

A comparison between the present theoretical findings and experimental data by 
Blondeaux et aZ. (1988) is shown in figure 7 where the ratio between the amplitude 
of fluid displacement a* and the critical ripple wavelength 1* is plotted versus R,. The 
theoretical predictions are shown for four different values of R, (20,40,80,100) and 
the experimental data are characterized by values of R, falling in the ranges (5,15), 
(15,25), (25,35), (50,80). The agreement seems satisfactory even though the theory 
somewhat underpredicts the wavelength of the ripples that appear. 

From the above results it is possible to obtain marginal stability curves. An 
example is shown in figure 8 where the values of F, such that dr vanishes are plotted 
versus a for particular values of R, and R,. As previously discussed, for fixed values 
of the sediment and flow Reynolds numbers a critical value of the particle Froude 
number can be easily determined below which a flat bottom configuration is stable. 
The critical value of the Froude number can then be plotted versus the Stokes 
Reynolds number R, for different values of R,. The plane (F,, R8) is thus divided into 
two regions (see figure 9) : in the lower region the bed is expected to remain flat while 
in the upper region ripples are expected to appear. A comparison of the theory with 
experimental data by Blondeaux et aZ. (1988) is shown in figure 10. A good agreement 
is found except for R, less than R,. Indeed in this situation d * is greater than 6* and 
the theory cannot be applied because Stokes flow is no longer significant. 

Finally, some further comparisons between the present theory and experimental 
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FIGURE 8. Marginal stability curve in the (Fd, a)-plane for R, = 80 and R, = 100 
(8 = 2.65, p = 0.15). 
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FIGURE 9. Limiting curves between flat bed and rippled bed regimes in the (R,,F,)-plane for 
different values of R, (8 = 2.05, /I = 0.15). 

data are pursued in figure 11 where the experimental and theoretical values of the 
ratio between the amplitude of fluid oscillations and the ripple wavelength are 
plotted versus the parameter [pd * / ( p ,  - p )  gT**] which has been proposed by many 
authors as that controlling ripple wavelength. It is worth pointing out that 
experimental data appearing in figure 11 are such that the ratio between ripple 
height and length is less than 0.1 and, following Sleath (1984), flow separation can 
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R, 

0 20 40 60 80 
R, 

(4 
Ripples 

2 

15 

0 20 40 60 

& 
FIGURE 10. Comparison between theory and experimental data from Blondeaux et al. (1988) of 
limiting curves between flat bed and rippled bed regimes in the (R,,F,)--plane (p = 0.15), (a) R, = 
10, s = 2.65, (6) R, = 20, s = 2.65, (c) R, = 20,s = 1.15. Experimental data are such that R, ranges 
between (a )  5, 15, ( b )  14, 24, (c) 15, 25 (0,  rippled bed; 0 ,  flat bed). 
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FIQURE 11. Ratio between fluid displacement a* and predicted critical ripple wavelength I* 
plotted versus the parameter pd * / (p , -p )  gT*2. , Manohar (1955) ; 'I, Kennedy & Falcon (1965) ; 
0, Yalin & Russel (1962); 0,  Horikawa & Watanabe (1967); V, Sleath (1976); ., Blondeaux 
et al. (1988). 

be assumed absent. It can be concluded that all data refer to rolling-grain ripples. In  
figure 11 the theoretical predictions fall within a dashed region delimited by two 
curves which correspond to two different values of R,, namely 10 and 100. The 
relatively large scatter in the experimental data appears to suggest the impossibility 
of predicting ripple wavelength on the basis of only one parameter. In figure 11 
theoretical predictions for very low values of pd * / ( p ,  - p )  gT*' are not shown because 
such values of this parameter imply a turbulent flow. The satisfactory agreement 
between the present theoretical predictions and experimental observations in spite of 
a still fairly rough modelling of sediment transport appears to support the following 
main conclusions of this work: 

(i) ripple formation is essentially an instability process ; 
(ii) the destabilizing effect is due to steady streaming associated with secondary 

flow which under certain conditions tends to carry sediment from the troughs to 
the crests of the perturbation. The stabilizing effect is gravity acting on sediment 
particle. 

Of course we cannot predict, on the basis of a linear analysis, whether growing 
perturbations eventually reach a finite equilibrium amplitude. This aim is pursued in 
the companion paper (Vittori & Blondeaux 1990) where the weakly nonlinear 
development of the most unstable bottom perturbation predicted by the present 
linear theory for values of the parameters close to the critical conditions is followed. 
Results described in Vittori & Blondeaux (1990) will allow us to determine the 
geometrical shape of finite-amplitude rolling-grain ripples and the conditions for 
rolling-grain ripples to evolve into vortex ripples. 

This work was supported by the Italian Ministry of Education under contract MPI  
60 %. Many thanks are due to Dr G. Vittori for discussions on various issues arising 
from the work. 
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